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Figure 1: PID control with saturation limits

1 Introduction

PID controllers are frequently used to control systems re-

quiring zero steady-state error while maintaining require-

ments for settling time and robustness (gain/phase mar-

gins). PID controllers suffer significant loss of perfor-
mance due to short-term integrator wind-up when used

in systems with actuator saturation (see Figure 1). We

examine several existing and proposed methods for the

prevention of integrator wind-up in both continuous and

discrete time implementations. We may write a continu-
ous time PID control law as

K(s) - Un(s) _ Kp + sKD + Ks/s (1.1)
E(s)

where u,_(t) is the nominal control command and e(t) =

Y_eI (t) -y(t) is the error between a reference signal yref(t)
and output y(t) of the system being controlled. The re-

spective state-space implementation is

= e u. = Kpe + KD_ + Ks_

Control saturation occurs when un lies outside of actuator

limits, u,, _ [umi_, Umax].

2 Background

Although numerous methods have been proposed for the

prevention of windup in controller integrators and slow
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dynamics, very few textbooks discuss the problem, par-

ticularly at the undergraduate level (e.g., [9]). The earliest

treatment of anti-windup techniques that we are aware of

was done by Fertik and Ross [8]. This technique fits into

the larger class of anti-windup bumpless transfer (AWBT)
control, example methods of which are covered in [1], [2],

[31, [41, [61, [11], [12], [13], [141, [15], [18], [22], [23]. a
general theoretical framework for the parameterization,

synthesis and analysis of AWBT control is provided in

[18], in which it is assumed all nonlinearities are exter-
nal to the controller; i.e., the controller is required to be

linear. Stability analysis for these methods is typically

performed through describing functions, see, e.g., [2].

Other anti-windup methods include conditional integra-

tion and/or integrator limiting, (e.g. [7], [10], [16]) which

freezes or "clamps" the integrator value when certain con-

ditions are not met, e.g., saturation, output not in "pro-

portional band," etc., the use of time varying gains to

avoid saturation [17], or the setting of the integrator to a

prescribed value during saturation, also called preloading

[21]. These methods do not fall into the class of AWBT

control, since the switching action on the integrator ren-
ders the method nonlinear.

3 VSPID control

While many of the above methods are applicable to mul-

tivariable systems, we shall confine our attention in this
paper to the treatment of PID control with individual
saturation limits for each PID channel. We shall contrast

three methods of conditional integration (CI), one method

of "preloading," a simple AWBT method, and a new vari-

able structure PID (VSPID) controller. Our discussion

makes use of the following definition.

Definition 3.1 The saturation function

sat(a, amin, amax) _= max(atom, rain(a, am_)).

It will be seen that the VSPID and AWBT methods yield

similar behavior when the AWBT uses a high-gain feed-

back of the control saturation error u,_ - u_, where we

define

u, _ sat(u,_, Urnin, Umax) (3.2)



Methodsthat weexaminehereare:

CI-I Integratorlimiting;see[5],p. 278.Imposehard
limits (saturation) on the integrator va/ue q:

0 0 ¢ [Omi_,Omax] and e x (77- 0) > 0,
e otherwise

The choice of design parameters *7,,,in, r/m_x is not always

clear; for this study, we choose

(thai,, rlm_) = (umi,, um,_)/Kt.

Freeze integrator input//at 0 when u,_ is in sat-CI-II

uration:

0 u_ ¢ us (see Equation (3.2))//= e otherwise
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Figure 2: Closed loop temperature profiles of simulated

furnace with continuous time anti-windup PID feedback
laws

CI-III Freeze 7) when un is being driven into saturation;

that is,

0 un # us and e(un - Us) > 07) = e otherwise (3.3)

(Ks > 0 is assumed.)

Preloading Manually reset integrator value r/to an off-

line predetermined value r/a when un is in saturation. For

the purposes of simulation, we implement this technique

by modifying the integrator input as

7) = e otherwise

where the parameter _ > 0 controls the integrator decay

rate when un is in saturation. For this study, we select an

integrator value of 774= 0.

AWBT [9] p. 198. Include an integrator feedback term

in the integrator involving the error between the nominal

control u_ and its limited value us:

7) = e - K_(un - u_).

Notice that un ¢ us implies that the error e and the

additional feedback term must "fight" one another. This
property is inherent due to the linear nature of the control
law.

VSPID Rather than freeze the integrator value as shown

above, dynamically drive the integrator so that un lies at

the edge of the saturation region:

Kt

_=

e

u,_¢us and _ >0,
Kt

otherwise

(3.4)

where ct > 0 is a positive constant selected such that u,_

rapidly converges to the nearest extreme value of [um,_, um_J.
Discrete time implementation of these control laws is

straightforward.

4 Simulation examples

The anti-windup methods of the previous section were

simulated in closed loop with a model of an electric fur-

nace P(s) with state-space model

d c c0:2- 250 j v(t) (4.1)

where v(t) is an input voltage constrained between 0V

and 10V, ](t) is the filament temperature and c(t) is the
chamber temperature. The uncompensated settling time

of the system is 200s. PID controllers were designed to

compensate the system to be critically damped with a

settling time of 15 seconds.

Simulated temperatures are shown in Figure 2 (decay

parameter a = 1 for all relevant antiwindup methods).
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Figure 3: Closed loop temperature profiles of simulated
furnace with continuous time anti-windup PID feedback

laws

AWBT method is due to the competition between the

error e(t) and tile feedback of the saturation error sig-

nal in the AWBT signal. This can be effectively elimi-

nated by increasing a to 100, at which point AWBT and

VSPID are nearly indistinguishable. This behavior of the

AWBT method is intuitively expected from the definition

of the AWBT method; a high gain feedback of the satu-

ration error renders the error signal e(t) inconsequential

at the integrator summing junction. The VSPID method

does not suffer from this drawback since the integrator is

switched, not summed, as a function of control saturation;

further, since the VSPID integrator settling time in satu-

ration (approx 4 see for a = 1) is significantly faster than

the designed system closed loop settling time (15 see), the

performance of the VSPID controller is not significantly

changed by increasing the decay factor a.

5 Stability analysis
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Figure 4: Closed loop temperature profiles of simulated

furnace with continuous time anti-windup PID feedback
laws

The curve labelled tf corresponds to a standard PID con-

troller with no antiwindup law implemented. Notice that,

for this example system, any antiwindup law is superior to
an uncompensated PID. However, several plots are clearly

superior to others. These signals are shown in Figures 3
and 4. Notice that the VSPID method has reduced

overshoot and settling time relative to the other methods

(although CI-III sometimes appears to be competitive).
Notice also that the VSPID and AWBT methods have

significantly differing performance due to the nonlinear-

ity of the VSPID method. The poor performance of the

We analyze the stability of the VSPID method in terms

of a larger class of variable structure antiwindup feedback
laws.

Theorem 5.1 Consider a linear, time-invariant system

S described by

= Ax + Bu + B,u. (5.2)

y(t) = Cx(t) (5.3)

withd _=diag(A,O),B_ [ 0 ..- 0 1 ]T,B_TB=O

and x = where 77 is a real scalar (integrator). Let
tl

the state space be denoted as X = 1R n and impose input
saturation limits u,nin, Urea= on the input u. Let r(t) be

a scalar reference signal. For each K E X*, the dual

space of X [1@ define the nominal (linear) state feedback

u,,(K,x(t)) _= Kx(t) and the corresponding limited state

feedback

u_(K, x(t)) = sat(un(K, x(t)), u..n, um._).

For each pair (K, a) in X* x IR define the variable struc-

ture antiwindup feedback law (VSAFL)

(K, a, and x are omitted

X+

Un. : 'U 8

(5.4)

Ur_ _ Lts

when clear by context.) Define

_= {xEX:Kx>u ...... }



X_ a_ {x _ X : Iiz < u,.i_}

Xe a__ {xeX:x_tX+uX_}

We say that the plant S (5.2) is in linear operation when

x(t) E Xe and that S is in saturation if X E X_ U X+.

Let 7) be the cone of positive definite, symmetric matrices.

For each K E X* define

P(K) = {PEP : AcT p + PAc <0,

A_ = (A + BK- B_C)}

P(K) is the set of positive definite matrices correspond-
ing to quadratic Lyapunov functions V(x) = xTpx for

the system S in linear operation. For each (K, P, a, u) E

(X* x P x ZR x IR) define the set

_; (K,P,a,u) = {x E X :

x T [(A- aBnK) TP+ P(A- aBnK)] x

+2xTp(B + aB,)u < 0}

Finally, for each (Q, 7) E P × 1R +, let

X (Q, 7) = {x x: zrQ < 7} c x

be the local region in X in which we wish to stablize X.

Then the VSAFL (5.4) with parameters K and a stabi-

lizes the plant on Xs(Q, 7) in the sense of Lyapunov if the

following three conditions hold.

1. P E 7a(K)

2. X_ D X, C V(K, P, a, Urnin)

3. X+ MX, C P(K,P,a,um_,)

The controller globally stabilizes the plant if Xs(Q,7) =

x,(o, oo) = x.

Proof: Observe that the sets X+, X_, Xe, 7), P(K),

V(K, P, a, u), and Xs(P, 7) are all convex. The bound-

aries of X+, X_, Xt are hyperplanes normal to the vector

K (see Figure 5). When S is in linear operation the closed

loop dynamics are

J: = Ax + BKx + B,(R- Cx)

= (A + BK - B_C)x + B,r (5.5)

When the system S is in saturation, the closed loop dy-
namics become

x(t) = Ax(t) + Bus(t) + aB,(u,(t) - Kx(t))

= (A- aB, K) x(t) + (B + aBn)u,(t) (5.6)
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Figure 5: Sets X+, X_, and Xt for VSAFL analysis

For each P E P, consider the quadratic function

g(x) = xTpx P E P.

A nominal state feedback un(K, x) stabilizes S if the set

P(K) is not empty. When S is in saturation

dv(x) xTp[(A + (B + aB_)u,]ag_K)x

+[(A - aB_K)x + (B + aB,)us]Tpx

= x T [(A- aB, K) TP + P(A - aB, K)] x

+2xT p(B + aB_)u,

with us = umm, um=x for x E X_, X+, respectively.

Now suppose that the conditions (1)-(3) hold for a given

set Xs(Q, 7). Then, for every m E X, we have that V(x) _>

0 and 17(x) < 0 with equality, holding only at the origin.
[]

6 Conclusions

We have presented the VSPID technique for the preven-

tion of integrator windup in PID feedback control. Stabil-

ity conditions are presented in terms of the larger class of

VSAFL systems with state-feedback and integrator con-
trol in Theorem 5.1. All of the sets in the theorem are

convex; further, the problem of computing a stabilizing
nominal state feedback matrix K is a convex programming

problem. Hence, we believe that VSAFL design problem

can be posed as a convex programming problem[19], which

can be solved in polynomial time [20]. However, since the
class of VSPID controllers are not a a subset of VSAFL

controllers, the resulting stability conditions do not lead

to a convex programming problem.

The combinatorial complexity of the VSAFL design

problem increases exponentially with the number of in-

puts subject to saturation; there are effectively 2 _ + 1



inputlawsactingin tandem,twoforeachinputchannel
(saturationlimit) andonefor tile linearregionofopera-
tion.

References

[1] K. J. _str6m and T. H_igglund. Automatic Tuning

of PID Controllers. Instrument Society of America,

Research Triangle Park, 1988.

[2] Karl Johan /_strSm and Lars Rundqwist. Integra-

tor windup and how to avoid it. In Proceedings of

the 1989 American Control Conferences, pages 1693-

1698, Pittsburgh, PA, 1989.

[3] P. S. Buckley. Designing override and feedforward

controls. Control Engineering, 18, 1971.

[4] P. J. Camp and M. Morari. Robust control of pro-
cesses subject to saturation nonlinearities. Comput.

Chemical Engineering, 1990.

[5] John Van de Vegte. Feedback Control Systems.
Prentice-Hall, 3rd edition, 1994.

[6] J. C. Doyle, R. S. Smith, and D. F. Enns. Control of
plants with input saturation nonlinearities. In Pro-

ceedings of the 1987 American Control Con/erence,

Minneapolis, 1987.

[7] L. H. Dreinhoefer. Controller tuning for a slow non-

linear process. IEEE Control Systems Magazine,

8(2) :56-60, 1988.

[8] H. A. Fertik and C. W. Ross. Direct digital control

algorithm with anti-windup feature. ISA Trans., 6,
1967.

[9] G. F. Franklin, J. D. Powell, and A. Emami-Naeini.
Feedback Control of Dynamic Systems. Addison-

Wesley, 3rd edition, 1994.

[10] S. E. Gallun, C. W. Matthews, C. P. Senyard, and

B. Slater. Windup protection and initialization for

advanced digital control. Hydrocarbon Processing,

pages 63-68, June 1985.

[11] A. H. Glattfelder and W. Schaufelberger. Stability

analysis of single loop systems with saturation and
antireset-windup circuits. IEEE Transactions on Au-

tomatic Control, AC-28:1074-1081, 1983.

[12] A. H. Glattfelder and W. Schaufelberger. Stability
of discrete override and cascade-limiter single-loop

control systems. IEEE Transactions on Automatic

Control, AC-33:532-540, 1988.

[13] R. Hanus and M. Kinnaert. Control of constrained
multivariable systems using the conditioning tech-

nique. In Proceedings of the 1989 American Control

Conference, pages 1711-1718, Pittsburgh, 1989.

[14] R. Hanus, M. Kinnaert, and J. L. Henrotte. Condi-

tioning technique, a general anti-windup and bump-
less transfer method. Automatica, 23:729-739, 1987.

[15] R. Hanus and Y. Pen& Conditioning technique for

controllers with time delays. IEEE Transactions on

Automatic Control, 37:689-692, 1992.

[16] G. Howes. Control of overshoot in plastics-extruder
barrel zones. In EI Technology, number 3, pages

16-17. Eurotherm International, Brighton, England,

1986.

[17] P. Kapasouris, M. Athans, and G. Stein. Design of
feedback control systems for stable plants with sat-

urating actuators. In Proceedings of the 27 th IEEE

Conference on Decision and Control, Austin, Texas,
1988.

[18] Mayuresh V. Kothare, Peter J. Campo, Manfred
Morari, and Carl N. Nett. A unified framework

for the study of anti-windup designs. Automatica,

30(12):1869-1883, 1994.

[19] D. G. Luenberger. Optimization by Vector Space

Methods. Wiley and Sons, Inc., New York, NY, 1969.

[20] Yurii Nesterov and Arkadii Nemirovskii. Interior-
Point Polynomial Algorithms in Convex Program-

ming. SIAM, 1994.

[21] Shinkskey. Process-Control Systems. McGraw-Hill,
New York, 3 edition, 1988.

[22] K. S. Walgama, S. RSnbaiick, and J. Sternby. Gen-
eralization of conditioning technique for anti-windup

compensators. IEE Proceedings Part D, 139:109-118,
1992.

[23] K. S. Walgama and J. Sternby. Inherent observer

property in a class of anti-windup compensators. In-
ternational Journal of Control, 52:705-724, 1990.


